Chapter 5.1

DIRDIF

Version 99.2

A Computer Program System for Crystal Structure Determination by Patterson Methods and Direct Methods applied to Difference Structure Factors

5.1 DIRDIF - Solve Menu

1.1 INTRODUCTION - WHEN TO USE DIRDIF ... 3

1.2 MAIN INDIVIDUAL PROGRAMS IN THE DIRDIF PACKAGE 4

 ORIENT .. 4
 FOUR ... 5
 NORECY ... 6
 TRAVEC ... 6

1.3. HOW TO RUN THE VARIOUS OPTIONS OF DIRDIF .. 6

 1.3.1 Instruction syntax .. 6
 DIRDIF CCODE PATTY (Auto|PATTY) .. 7
 DIRDIF CCODE ORBASE (Interactive|ORBASE-ATMOD) .. 7
 DIRDIF CCODE ORIENT (Auto|ORIENT) .. 7
 DIRDIF CCODE PHASEX (Auto|PHASEX) ... 8
 DIRDIF CCODE FOUR (Auto|FOUR) ... 8
 DIRDIF CCODE BINFO ... 9
 DIRDIF H (Interactive|Help) .. 9
 DIRDIF CCODE (Interactive|Session) ... 9
 DIRDIF CCODE DIRP1 (Auto|DIRP1) .. 9
 DIRDIF CCODE PHASEX NORECY (NoRecycle|PHASEX) .. 9
 1.3.2 Restarting DIRDIF ... 9

1.4 DIRDIF FILE DEFINITIONS .. 10

 1.4.1 Listing files LIS1 and LIS2 .. 10
 1.4.2 Atomic parameter files ATOMS and ATMOD .. 11
 1.4.3 Crystal data files CRYSin and CRYsDA ... 12
 1.4.4 Reflection data files .. 14
 1.4.5 DDLOG file .. 14
 1.4.6 ORBASE and ORUSER files ... 14

1.5. EXAMPLES (STRUCTURE MONOS) ... 15

 RUN 1 Option PATTY in automatic mode.. 15
 RUN 2. Option PHASEX in automatic mode... 16
 RUN 3/4 Option ORIENT in interactive mode .. 16

1.6 HOW TO INTERPRET THE RESULTS, TROUBLE SHOOTING, HOW TO RESTART 17

 1.6.1 Restarting DIRDIF ... 19

1.7 NOTES FOR VARIOUS COMPUTERS .. 19

 1.7.1 Directories and filenames for MSDOS/Windows ... 19
 1.7.2 Directories and filenames for UNIX (AIX, LINUX, etc) .. 19

1.8 ACKNOWLEDGEMENTS ... 19

1.9 DIRDIF DOCUMENTS .. 20

1.10 REFERENCES .. 20

Reference to DIRDIF-99 .. 20
1.1 Introduction - when to use DIRDIF.

DIRDIF is a coherent collection of computer programs tuned into a program system for solving crystal structures. Major features are the use of Patterson methods and special direct methods for solving symmetry problems. Powerful procedures are provided for the use of \textit{a priori} chemical knowledge to solve difficult structures. \textit{Ab-initio} direct methods and least-squares structure refinement are not included in the DIRDIF package. The program system is designed to operate under a wide variety of circumstances using individual programs and options. Most options are carefully automated according to the black box principle, but the experienced user has interactive control, so that strategy may readily be adapted to the current problem. An on-line help-facility is provided. It is limited in scope and not meant to replace this PRIMER.

All programs are written in standard FORTRAN-77 and are believed to be as fully computer-independent as is reasonably feasible. Inevitable computer-dependent parts are either provided for common computer systems or can be bypassed (e.g. the timer routine). This document describes the command-line mode of operation for the UNIX/DOS versions of the program. The Windows version has standard pull-down menus, but the operation of the program is essentially the same, and the menu items relate in a straight-forward fashion to the line commands.

DIRDIF is used in two ways for routine structural analyses:

- To solve a heavy atom structure using the Patterson interpretation program \texttt{PATTY}. The only required input data are the crystal data and reflection data. After location of the heavy atoms (which could include S or P atoms in a light atom structure) the structure is automatically expanded until complete.
- To solve a structure with a partially known molecular fragment, often a rigid part of the molecule, using the vector search program \texttt{ORIENT}. After orientation, the model is automatically positioned and further expanded to complete the structure. The search model, a file ATMOD with atomic coordinates, must be prepared in advance.

DIRDIF can also be used for special problem cases:

- When \textit{ab-initio} direct methods give a misplaced fragment – \textit{use option TRACOR}
- For expansion of a small fragment to the complete structure – \textit{use option PHASEX}
- For enantiomorph or super/pseudo-symmetry problems – \textit{use option PHASEX}
1.2 Main individual programs in the DIRDIF package

DDSTART and **DDMAIN** are essential programs in the system. They are normally executed automatically when needed, but can also be executed on request of the user. Details are available by using the H (=help) options of the system.

- **DDSTART**
 Starting up an automatic or interactive run (including option **ORBASE**)

- **DDMAIN**
 Various calculations (Fcalc, R2, etc.) and recycling control.

PATTY, **ORIENT**, **TRACOR**, **PHASEX** and **FOUR** are the main structure-solving programs. The programs can be called interactively or in automatic mode. In both cases the system will automatically continue to perform all necessary calculations to complete the structure.

PATTY

This is a program for the interpretation of a sharpened Patterson. It uses Buerger's implication theory, *i.e.* the so-called symmetry map, and checks all cross vectors using the minimum-function value as a selection criterion. The program is used for heavy atom structures with unknown heavy atom positions (including not-so-heavy-atoms like S or P in a light atom structure).

ORIENT

This is a program to find the orientation of a molecular fragment/model by means of Nordman's vector search method. The input model is used for the calculation of interatomic vectors. The shape function of a single interatomic vector peak is approximated from the shape of the origin peak of the Patterson function, and it is used for the calculation of the overlap between neighbouring vectors of the model. Vectors used in the search are selected on the basis of their weight (including overlap), length, and mutual separation. A fast cyclic search system in angular space (Eulerian angles denoted by A, B, C), employing increasing resolution per cycle, leads to the best fitting orientation of the model. The fitting criterion is the Nordman 'minimum average' function value. The program is used for structures which have a known (fixed) geometry for a relatively small part of the molecule. Often such a molecular fragment/model will be available from the users own collection of related structures.

TRACOR

This is a program to find the position of a molecular fragment with known correct orientation by means of reciprocal space correlation functions. The input fragment (the ATOMS file) is used for the calculation of partial structure factors for all reflections for the entire expanded data set. The partial structure factor, which is the sum of partial structure factors of symmetry related fragments, depends on the vector \(t \) used for shifting the input fragment to another position. The correlation between calculated and observed structure factors determines the best value for the shift vector \(t \). The calculations are done by the Fast-Fourier-Transform method employing all symmetry elements simultaneously. The program is used for positioning a structural fragment with correct orientation but unknown position. The program is automatically executed in the procedure initiated by calling **ORIENT** (see above). A correctly oriented fragment is sometimes available as the result of a failure of *ab-initio* direct methods. When a recognisable fragment does not allow expansion or refinement, then the fragment may be misplaced, though the orientation is correct.
PHASEX
This is a program to EXpand and refine the PHASes of the difference structure factors by direct methods. The input fragment (a correct but incomplete set of atomic parameters, for instance known heavy atoms or an oriented and positioned molecular model) is used to calculate normalised (Wilson-Parthasarathy) difference structure factors giving E1 values. Weights (Woolfson or Sim) are then calculated and the E1 values with the most reliable phases are input to a modified tangent formula to refine the input phases and to calculate phases for unphased reflections. The application of DIRect methods to the DIFference structure factors is particularly powerful:
- when the known part of the structure is only marginally sufficient to solve the structure,
- when the model has higher translation symmetry than the space group (superstructure),
- when the centrosymmetric input model comprises an enantiomorph problem,
- when the known atoms comprise another pseudosymmetry problem such as a 'chicken wire' fragment.

The program recognises the symmetry problem and uses a special symbolic addition procedure to solve the enantiomorph and/or origin ambiguity problem. The program is used for expanding a partial structure, and is automatically executed in the procedures initiated by PATTY, ORIENT or TRACOR.

FOUR
This program calculates Fourier and Patterson maps. It implies calculation of distances and angles, assignment and shuffling of new peaks into connected residues, and plotting of the asymmetric part of the structure. The program FOUR also initiates further expansion of the structure and recycling (reactivating the programs DDMAIN, PHASEX and FOUR). Note that the assignment of peaks is based purely on peak heights and geometrical considerations, and not on any chemical arguments. The user must apply chemical knowledge and make the appropriate modifications to the final output atomic parameters. The program uses input files generated by other programs (via the program DDMAIN). It is automatically executed in the procedures initiated by PATTY, ORIENT, TRACOR or PHASEX. When the known part of the structure is relatively large, program FOUR is executed instead of PHASEX because the difference structure factors are then unreliable.

Finally we describe the two options ORBASE and DIRP1, the parameter NORECY, and two more programs: TRAVEC and NUTS (Nijmegen UTilitieS).

<table>
<thead>
<tr>
<th>ORBASE</th>
<th>This is a special option which can be used to prepare a suitable ATMOD model file for input to the vector search program ORIENT. A model can be selected interactively from the ORBASE/ORUSER databases of molecular fragments (see ORBASE-Gallery). Some facilities are available for modifying the model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRP1</td>
<td>This option can be useful for solving structures in cases where there is uncertainty about the space group, the composition of the compound, or the position of some heavy atoms. The option DIRP1 causes the reflection data to be expanded to the space group P1 (or a centered equivalent e.g. C1) and</td>
</tr>
</tbody>
</table>
5.1 DIRDIF - Solve Menu

| calls the option PHASEX for elucidation of the structure in P1. The input model may consist merely of a single atom at the origin |
NORECY	This is an additional calling parameter (Menu item in Windows version) which is used to suppress the automatic recycling procedure. The keyword NORECY is added to the calling parameters. The recycling should be bypassed only when the automatic procedure has failed to solve the structure.
TRAVEC	This is a program which is automatically executed after the execution of TRACOR. It is based on vector search methods, and it calculates a FOM (figure of merit) which helps to select the best shift vector \(t \) from the TRACOR results. In a few cases an erroneous TRACOR result is corrected by TRAVEC.
NUTS	This is a collection of sub-programs for various utility functions:
• AT2X conversion of ATOMS to XZN (SHELX format) and other formats	
• X2AT conversion of XZN to ATOMS (DIRDIF format)	
• BIJVOET calculation of absolute configuration	
• SHAT shift atoms	
• EULER rotation of a rigid fragment (by A,B,C, in angular space)	
• INVERT inversion of atomic parameters	

1.3. How to run the various options of DIRDIF

See Section 1.4 on the required files and the DIRDIF file definitions.

1.3.1 Instruction syntax

CCODE = compound code, PROGRAM = program name or option.

For the execution of any of the structure-solving programs PATTY, ORIENT, TRACOR, PHASEX and FOUR, the user has the choice between automatic mode and interactive mode:

DIRDIF CCODE PROGRAM for automatic execution
DIRDIF CCODE for interactive execution

In the interactive mode every question is provided with a help facility. The execution of some additional options (see below) and the execution of the program NUTS and any of the programs collected in NUTS (AT2X, BIJVOET, etc) is interactive:

DIRDIF CCODE PROGRAM
DIRDIF CCODE NOFREE
DIRDIF CCODE

In this document, line commands are shown in *italicised bold type* e.g. **DIRDIF** CCODE **PATTY**, with the corresponding Windows menu item shown in parentheses after *e.g. (Auto)PATTY*.

Chapter 5.1 DIRDIF 6
| Command | DIRDIF CCODE PATTY (Auto|PATTY) |
|--------------------------|--|
| Purpose | To run PATTY for Patterson interpretation, when the structure contains heavy atoms (including S or P in a light atom structure). No input atoms needed. The system automatically initiates the following procedure. First the Patterson function is calculated using program FOUR, then the heavy atom(s) are located with program PATTY, the partial structure is then expanded using program PHASEX, followed by FOUR and finally recycling is continued (with programs DDMAIN, PHASEX and FOUR) until the structure is completed. Structural parameters are output in the files ATOMS and CCODE.RES. |

| Command | DIRDIF CCODE ORBASE (Interactive|ORBASE-ATMOD) |
|--------------------------|--|
| Purpose | This procedure is used when the user wishes:
• to check an ATMOD file prepared in advance from literature data, molecular modelling or personal archives.
• to retrieve a model from the ORBASE/ORUSER databases.
• to modify interactively an ATMOD file by adding, deleting or renaming atoms.
Structural parameters are output in an updated ATMOD file containing Cartesian coordinates. |

| Command | DIRDIF CCODE ORIENT (Auto|ORIENT) |
|--------------------------|--|
| Purpose | To apply vector search methods in automatic mode. An ATMOD file is required. When the user calls ORIENT, the system automatically initiates the following procedure. First the ATMOD file with the atomic parameters of the model is checked and perhaps rewritten. then the Patterson function is calculated (program FOUR), the orientation of the model is searched (program ORIENT) and then translated according to space group symmetry (program TRACOR followed by TRAVEC, see below). Finally, the partial structure is expanded, and recycled several times (programs PHASEX, FOUR) to complete the structure. Structural parameters are output in the files ATOMS and CCODE.RES. |

Additional options (for various kinds of problems)

| Command | DIRDIF CCODE TRACOR (Auto|TRACOR) |
|--------------------------|--|
| Purpose | To expand structural fragments with a correct orientation but unknown position. Input fractional atomic coordinates are supplied in an ATOMS file. The program is automatically executed in the procedure initiated by ORIENT. The program can be explicitly called by the user in a number of cases.
• If the 'best' solution from the vector search procedure ORIENT failed to solve the structure. The user may then supply the 'second best' solution stored in the back-up file ATOLD.
• If a correctly oriented fragment is available from a failed ab-initio direct methods run. When a recognisable fragment does not allow expansion or refinement, then that fragment may be misplaced, but have the correct orientation.
• The program is also a powerful tool for the elucidation of heavy atom |
structures. For instance, the origin and the next largest non-Harker Patterson peak define a pair of heavy atoms which can be used as a well oriented model to be positioned by the program TRACOR.

When the user calls for TRACOR, the system automatically initiates the following procedure. First expand the reflection data to a half-sphere and use the fragment to calculate partial structure factors (program DDMAIN), then find the position of the fragment (programs TRACOR and TRAVEC), expand the partial structure and recycle (programs DDMAIN, PHASEX and FOUR) to complete the structure elucidation. Structural parameters are output in the files ATOMS and CCODE.RES

| Command | DIRDIF CCODE PHASEX (Auto|PHASEX) |
|---------|-----------------------------------|
| Purpose | To expand and recycle a partial structure, i.e. when some atoms are known on correct positions. Input fractional atomic coordinates are given in the ATOMS file. The program is automatically executed after PATTY, ORIENT or TRACOR. The program can be called explicitly by the user in a number of cases
 - If the 'best' solution from either PATTY or TRACOR failed to solve the structure, the user may supply the 'second best' solution stored in the back-up file ATOLD
 - The user may use PHASEX when he/she has other suggestions for atomic positions. For instance he/she may have modified the atoms in the ATOMS file from a previous DIRDIF run (which, of course, is only useful if something went wrong).
When the user calls for PHASEX, the system automatically initiates a structure factor calculation and normalisation (program DDMAIN), then executes the program PHASEX to expand and refine the phases of the difference structure factors. It then calculates and interprets a Fourier synthesis (program FOUR), and finally recycles several times (programs DDMAIN, PHASEX and FOUR) to expand the fragment and complete the structure. Structural parameters are output in the files ATOMS and CCODE.RES. |

| Command | DIRDIF CCODE FOUR (Auto|FOUR) |
|---------|-----------------------------------|
| Purpose | The program FOUR is automatically executed after PATTY, ORIENT, TRACOR or PHASEX. The program can be called explicitly by the user in a number of cases similarly to PHASEX (see above). Input coordinates in an ATOMS file. When the user calls for FOUR, the system will automatically initiate a structure factor calculation (program DDMAIN) and then call for a default Fourier synthesis (program FOUR). The program FOUR then initiates recycling (programs DDMAIN and FOUR) until the structure is completed. Intermediate atomic parameters are saved in the ATOLD file, final output atomic parameters in the ATOMS and CCODE.RES files. |

<table>
<thead>
<tr>
<th>Command</th>
<th>DIRDIF CCODE NUTS or e.g DIRDIF CCODE AT2X (Windows version - use the Utilities menu items)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>This call invokes an interactive session for the execution of various utility calculations. One option is AT2X, a subprogram for the conversion of the final ATOMS file into files for other programs (SHELXL, PLUTON, SCHAHAL). Other options (sub-programs) are X2AT, BIJVOET, SHAT, EULER and INVERT. Call NUTS for more information. The program NUTS (option AT2X) is automatically executed in all structure solving procedures after the final execution of program FOUR.</td>
</tr>
</tbody>
</table>
5.1 DIRDIF - Solve Menu

| Command | **DIRDIF CCODE CRYSDA (Interactive|Create CRYSDA)** |
|----------|--|
| Purpose | To create a 'permanent' CRYSDA file with extended crystal data. Usually the CRYSDA file is generated automatically, and deleted at the end of a job. If the user wishes to modify the crystal data, he should first of all erase any existing CRYSDA file, and then modify the CRYSDIN file. |

<table>
<thead>
<tr>
<th>Command</th>
<th>DIRDIF CCODE BINFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>To call the subroutine MERBIN for data merging, the Wilson plot, etc and to prepare a 'permanent' BINFO file with binary formatted reflection data. Usually the BINFO file is generated automatically and deleted at the end of a job. When the user has modified the reflection data file, any existing BINFO file should be erased.</td>
</tr>
</tbody>
</table>

In case of problems:

| Command | **DIRDIF H (Interactive|Help)** |
|----------|---------------------------------|
| Purpose | To invoke a short help session. (No CCODE given, no data needed.) For the new DIRDIF user it is really useful to try out all possibilities in order to get used to the system. |

| Command | **DIRDIF CCODE (Interactive|Session)** |
|----------|---------------------------------|
| Purpose | To start an interactive run. When DIRDIF is activated in interactive mode the user is asked to select an option or program (ORIENT, PATTY, *etc*) and then whether or not special control data are wanted. Interactive help facilities are available. For a first run we strongly advise using the default values. |

| Command | **DIRDIF CCODE DIRP1 (Auto|DIRP1)** |
|----------|---------------------------------|
| Purpose | To start a procedure to solve the structure in P1. It is used in cases where the space-group, the composition of the compound, or the position of some heavy atoms is very uncertain. The input partial structure (ATOMS file) may be, for instance, a single atom at the origin. The following procedure is undertaken. The reflection data are expanded to space group P1 (or centered equivalent e.g. C1) and the program PHASEX is executed for elucidation of the structure in P1. The one-atom case is made asymmetric by the enantiomorph-fixing procedure. After inspection of the results the user has to decide how to continue. There is no automatic recycling. After several 'hand'-controlled restarts (editing the output ATOMS file by hand, perhaps changing the crystal data), the user must recognize and locate the symmetry elements (TRACOR may be helpful in this respect.) |

| Command | **DIRDIF CCODE PHASEX NORECY (NoRecycle|PHASEX)** |
|----------|---------------------------------|
| Purpose | To start an automatic PHASEX run while suppressing the automatic recycling procedure. Similar options for PATTY, ORIENT and TRACOR. |

1.3.2 Restarting DIRDIF
When rerunning one of the options of DIRDIF, it is important to consider which atomic parameter set is to be used as input. The recycling procedure may be started using the existing ATOMS file (output from last DIRDIF run), or one of the parameter sets stored in the back-up file ATOLD may be selected and copied to the ATOMS file. To decide which option of DIRDIF to call, consider their consecutive actions:
5.1 DIRDIF - Solve Menu

The following table shows the steps involved in solving a structure using the DIRDIF system:

<table>
<thead>
<tr>
<th>call:</th>
<th>find heavy atom(s)</th>
<th>fragment orientation</th>
<th>fragment positioning</th>
<th>fragment expansion*</th>
<th>make Fourier*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATTY</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ORIENT</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>TRACOR</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>PHASEX</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FOUR</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>

* PHASEX or FOUR are recycled by default until completion of the structure. The recycling procedure is suppressed by the calling parameter NORECY (Windows Menu item NoRecyle).

1.4 DIRDIF file definitions

File names are dependent on the computer and on local use. The different files of the DIRDIF system are referred to by their functional type. The filename dictates the contents and the format of the file. Within the FORTRAN programs and in all documents filenames are shown in UPPER CASE. They may locally be transcribed to lower case, and maybe concatenated by compound code or directory name (or otherwise changed to local conventions). For example: for the test compound MONOS the primary crystal data is given in the CRYSin file. For the MSDOS/Windows version of DIRDIF the filename remains CRYSin. For the VAX-VMS version the filename is CRYSin.DAT. For all UNIX systems the same file is called monos.crysin.

Most programs require a reflection data file and a crystal data file. The primary crystal data may be supplied manually, but it is preferable to prepare the CRYSin file in advance. For the application of vector search methods (ORIENT), the user has to prepare an ATMOD file (with the a-priori known molecular geometry) either before the automatic execution of ORIENT, or in an interactive session on request. In some cases (problem structures) the user has to prepare an ATOMS file. Atomic parameters of all possible solutions obtained by programs PATTY or ORIENT and TRACOR, and also atomic parameters of some intermediate results (program FOUR) are stored in the back-up file ATOLD. The DDLOG file keeps a record of some data of subsequent runs. When the structure has been solved the results and comments are given in the LIS1 and LIS2 files and the atomic parameters of the structure in the ATOMS file as well as in the (SHELX format) XYZN file.

Most files consist of free-format records of up to 72 characters each. The order of words (literals, numbers) in a record is fixed. The first word of a record is a keyword for identification. The first record is usually a header record with at least FILENAME and CCODE. REMARK records (keyword=REMARK) with printable information may be inserted anytime. The last record is an END or a FINISH record. Note that reflection files have fixed format and REMARK records are not permitted.

1.4.1 Listing files LIS1 and LIS2

The system produces a file for printing (LIS1) which gives the most important information on the solution of the structure. In addition a longer listing file, LIS2, is produced which gives information on the input data, the execution of the various programs, and their results. Inspect the file LIS2 only if you are interested or when the structure did not come out as you hoped or expected. With the aid of the detailed information you might be able to detect where things went wrong, then change the input data and start DIRDIF again. Certainly LIS2 should not be printed routinely. But if things really go wrong, do send the LIS1 and...
5.1 DIRDIF - Solve Menu

LIS2 files to Nijmegen. We will be glad to help you. The LIS-files are overwritten in a next run. In the Windows version they are renamed to DIRDIF.LST and DIRDIF1.LST.

1.4.2 Atomic parameter files ATOMS and ATMOD

The input and output atomic parameter files of the DIRDIF system are:

<table>
<thead>
<tr>
<th>name</th>
<th>purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOMS</td>
<td>input to most programs, overwritten with output parameters</td>
</tr>
<tr>
<td>ATMOD</td>
<td>file with the model parameters input to the program ORIENT</td>
</tr>
<tr>
<td>ATOLD</td>
<td>a collection of parameter sets, to be used as back-up file</td>
</tr>
<tr>
<td>XYZN,SPF,SCHAKAL</td>
<td>for communication with other program systems. For instance, when XYZN is renamed to CCODE.INS, the file is ready for input to the SHELXL least-squares refinement program</td>
</tr>
</tbody>
</table>

The ATOMS file consists of the following records, each containing a keyword followed by data:

```
ATOMS    CCODE    more-info       (ATOMS file)
ATOM      atomname   x  y  z       (x,y,z: fractional atomic coordinates)
REMARK    comments                 (optional, as many as desirable)
END                            (last record)
```

An atomname begins with the chemical symbol (upper case) and may be followed by one or more characters (e.g. C7, C+7, C7+, C7A are carbon atoms; CA is a calcium atom, CX is an error). Alternatively an atomname may consist of the chemical symbol, one or more blanks, and one unsigned integer number (e.g. C 27). Uninterpreted residual peaks of a Fourier map are given the chemical symbol Q.

It is possible to supply a site occupancy factor sof (sof = 1.00 for atoms in general positions and on special positions, sof < 1.00 for disordered atoms) and an isotropic temperature factor (B) on the ATOM record. Supply this information ONLY if the data is certain, because it will have a significant effect on the scaling procedure.

When the structure has been solved the output ATOM records are provided with a site occupancy factor (sof = 1.00) and an isotropic temperature factor (B):

```
ATOM      atomname   x  y  z   sof   B
```

At the end of a structure solving run, the program NUTS/AT2X converts the output ATOMS file to a SHELX format XYZN file and optionally to SPF and SCHAKAL files (input to the graphics programs PLUTON and SCHAKAL, respectively). In the Windows version the XYZN and SPF files are automatically renamed to CCODE.RES and CCODE.SPF.

An ATMOD file has a similar structure to an ATOMS file. Possible header records are:

```
ATMOD     MCODE    more-info       (MCODE = Model code)
ATMOD     MNUM  MCODE             (MNUM = Model number)
ATMOD     MCODE  MCELL a b c alpha beta gamma
ATMOD     CART
ATMOD     MCODE CART MNUM
ATOMS     CCODE                            (using cell of present CCODE)
```
REMARK records can be inserted (after the header) whenever needed.
END is the last record.
ATOM records are identical to those in ATOMS files, except that Cartesian (Angstrom) coordinates may be used in addition to fractional coordinates.

The information CART (for Cartesian) is optional as DIRDIF finds out whether the parameters are fractional or Cartesian. The information 'MCELL a b c alpha beta gamma' is necessary only when the fractional atomic parameters of the model or fragment are represented in a unit cell that is different from the present compound CCODE. In an interactive session the MCELL data can also be provided at the terminal. Atomic parameters of a known molecular model in the ORBASE/ORUSER database may be retrieved interactively using the ORBASE option (an ATMOD file is then automatically written). Alternatively, the parameters may be obtained from a previously solved structure, from the literature or from molecular modelling programs, and the ATMOD file prepared manually using a text editor. An ATMOD file prepared by any of these methods may also be modified using the ORBASE option. After checking, editing, and possible re-orientation, a new ATMOD file is output with Cartesian coordinates. The original input file is saved in the ATOLD file for back-up purposes.

1.4.3 Crystal data files CRYSIN and CRYSDA

Name purpose
CRYSIN primary crystal data: standard DIRDIF input file
CRYSDA extended crystal data, generated by subroutine CRYSDA

The subroutine CRYSDA is usually called automatically. It reads crystal data from a CRYSIN file (highest priority) or from other input possibilities (existing CRYSDA, INS/RES, CIF, files or from the keyboard) and produces a CRYSDA file. This file contains the input crystal data and extended data such as cell volume, calculated density, tables of scattering factors, etc. If no CRYSIN file was available, or if the data in the CRYSIN file was incomplete, or if the crystal data was modified interactively, a new CRYSIN file will be output. The CRYSIN file is kept, but normally the CRYSDA file is deleted at the end of the job. The CRYSIN file contains the following records:

<table>
<thead>
<tr>
<th>Name</th>
<th>purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRYSIN</td>
<td>CCODE more-info</td>
</tr>
<tr>
<td>TITLE</td>
<td>any user supplied information</td>
</tr>
<tr>
<td>CELL</td>
<td>a b c alpha beta gamma</td>
</tr>
<tr>
<td>CELLSD</td>
<td>esd's</td>
</tr>
<tr>
<td>SPGR</td>
<td>e.g. P 1 or P 21 21 21 or R -3</td>
</tr>
<tr>
<td>FORMUL</td>
<td>At1 Nr1 At2 Nr2 At3 Nr3</td>
</tr>
<tr>
<td>Z</td>
<td>number of FORMUL units / cell</td>
</tr>
<tr>
<td>WAVE</td>
<td>Cu or Mo or Fe or Ag or Cr</td>
</tr>
<tr>
<td>ORIN</td>
<td>crystal orientation matrix</td>
</tr>
<tr>
<td>HKLF</td>
<td>3/4</td>
</tr>
</tbody>
</table>

Example: for Na2CO3.7H2O:
FORMUL NA 2 C 1 O 3 H 14 O 7
Z: number of FORMUL units / cell

(Note: cell contents = Z * FORMUL)
(! Z is not a symmetry factor !)

END
An example CRSYIN file is

CRYSIN sucrose
TITLE sucrose in P 21
CELL 7.75720 8.71060 10.86120 90.000 102.950 90.000
CELLSD 0.00040 0.00060 0.00040 0.00000 0.00400 0.00400
SPGR P 21
FORMUL C 12 H 22 O 11
Z 2
WAVE Mo
HKLF 4
END

An example CRYSDA file is

CRYSDA SUCROS Crystal data file, date: 1900 1 7 RUN 1 KEEP
TITLE sucrose in P 21
CELL 7.75720 8.71060 10.86120 90.000 102.950 90.000
CELLCO C 24 H 44 O 22
RCELL 715.224 0.068
VOLUM 715.224 Volume, Sigma(Volume)
WAVE Mo 0.710730 0.709300 0.713590 0.632288 <A>,A1,A2,B
FORMUL C 12.00 H 22.00 O 11.00
MOLW 342.299 Molecular weight
Z 2 Number of formula units/cell
NELEC 364 Total number of electrons
F000 363.970 F000 including anom.scatt.
MU 1.334 Linear abs. coeff. in cm**-1
DCALC 1.589 Calculated density
ICENT 1 Noncentrosymmetric
ILATT 2 Primitive
ISYSTM 2 Monoclinic
ILAXE 2 2/m
IMULT 2 Multiplicity of genl. position
IUNIQ 2 B axis unique
IPOLA 2 Polar along y
NTYPE 3 Number of atom types
ELEM C 6 12.01100 0.53480 0.91600 0.77000 0.91000
SFAC C 2.31000 20.84390 1.02000 10.20750 1.58860 0.56870 =
ELEM H 1 1.00790 0.37270 0.78000 0.00400 0.79000
SFAC H 0.49300 10.51090 0.32291 26.12570 0.14019 0.00304 =
ELEM O 8 15.99940 0.1148027 0.002 0.002 0.86700 =
SFAC O 3.04850 13.27710 2.28680 5.70110 0.79000 0.73000
NSYMM 2 Number of symmetry matrices
SYMMAT 1 0 0 0.0000000 0 0 1 0.0000000 0 0 1 0.0000000
SYMMAT -1 0 0 0.0000000 0 1 0 0.5000000 0 0 -1 0.0000000
NLATT 1 Nr. of lattice centering vectors
CENVEC 0.0000000 0.0000000 0.0000000
NSXY2 2 Number of X,Y,Z symmetry cards
SYMIT X , Y , Z
SYMIT -X , 1/2+Y , -Z
NORIG 4 Nr. of origin translation vectors
ORGVEC 0.0000000 0.0000000 0.0000000
ORGVEC 0.0000000 0.0000000 0.5000000
ORGVEC 0.5000000 0.0000000 0.0000000
ORGVEC 0.5000000 0.0000000 0.5000000
FRAC2C 7.757200 0.000000 -2.434001
0.000000 8.710600 0.000000
0.000000 0.000000 10.584957
CART2F 0.12891249359 -0.00000000029 0.02964331210
0.0000000000 0.1148026511 0.0000000000
0.0000000000 0.0000000000 0.99447368979
RRMAT 60.174149 0.000000 -18.881035
0.000001 75.874550 0.000000
-18.881035 0.000000 117.965675
SSMAT 0.01749715768 -0.00000000029 0.01317964960 -0.00000000005
0.00000000000 0.0892527867
END
5.1 DIRDIF - Solve Menu

When during the crystal structure analysis you wish to alter the cell contents or the space group, you have to delete any existing CRYSDA file and then modify the CRYSSIN file.

1.4.4 Reflection data files

<table>
<thead>
<tr>
<th>Name</th>
<th>purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREF/FREFA/FREFB/FREFC</td>
<td>DIRDIF formatted input reflection file (F)</td>
</tr>
<tr>
<td>HKL</td>
<td>SHELX formatted input reflection file (F or F**2)</td>
</tr>
<tr>
<td>BINFO</td>
<td>output binary reflection file</td>
</tr>
</tbody>
</table>

The subroutine MERBIN finds out which input data file is present, it reads the reflection data and writes a temporary binary reflection data file BINFO. Formats of the reflection data files:

FREF alias FREFA FREFB FREFC: formatted reflection data file,
28 characters/record
(standard DIRDIF file) with Fobs values
first record: header with 'FREF' or 'FREFA' ... and CCODE
following records: 1 reflection each, FORMAT (A1,3I3,I2,F9.2,F7.2)
for: ' ', h, k, l, JC, Fobs, sigma
JC=2 for 'unobserved' or 'unreliable',
else JC=1 or blank
last record: 'E'

HKL alias SHELX SHELXL: formatted reflection data file,
28 characters/record
with |Fobs| or |Fobs|**2 values
(defined by a HKLF record: no default!)
First record: HKLF header (optional, not SHELXL convention)
First word: 'HKLF' on columns 1 - 4
Second word: the CCODE (optional, not checked)
Then: one number, either 3 or -3 : |Fobs| expected,
or 4 or -4 : |Fobs|**2 expected !
Following records: 1 reflection/record, FORMAT (3I4, 2F8.2)
for: h, k, l, |Fobs|, sigma
or: h, k, l, |Fobs|**2, sigma
(Note: the SHELXL batch number on cc. 29-32 is ignored.)
Last record: h = k = l = 0 (or: all blanks)

Note about the SHELXL indices transformation matrix Rij given on the HKLF record: This feature is available, but should be used with care !! It is not used on crystal data.

A CIF file (e.g. a SHELX FCF file) cannot be used for reflection data input.

1.4.5 DDLOG file

This textfile contains a summary of DIRDIF runs with pertinent data. It should normally be kept, but if a "clean start" is required it should be deleted.

1.4.6 ORBASE and ORUSER files

ORBASE a data base with molecular fragments.
ORUSER a private extension of ORBASE (with your own favourite models)
A write-up of these files is given in the header lines of these files. The user is urged to add manually his own structural molecular fragments to the file ORUSER for future use when solving 'similar' compounds.

1.5. Examples (structure MONOS)

You may wish to get acquainted with DIRDIF by running an example. We have provided the data for the test structure MONOS. Look at the MONOS data files (change directory to MONOS ?). The crystal data for MONOS are given in the CRYSIN file. The molecule contains a sulfur-bridged six-membered ring which is given in ORBASE under the model name MONOS. What to do if more MONOS data files are present (e.g. from former test runs)? You do not have to erase any file. If you wish to have a 'cold' start with MONOS: erase the DDLOG file. Proceed to run DIRDIF with the data of test structure MONOS, solving the structure of MONOS by three different routes, depending on the \textit{a priori} information we assume to know:

- \textbf{RUN 1} - call program \textbf{PATTY}, using DIRDIF in automatic mode
- \textbf{RUN 2} - call program \textbf{PHASEX}, using DIRDIF in automatic mode
- \textbf{RUN 3} - call program \textbf{ORIENT}, using DIRDIF in interactive mode

\textbf{RUN 1 Option PATTY in automatic mode}

We know there is a sulfur atom, but we assume not to know its position. We start an automatic (default) run of DIRDIF program \textbf{PATTY}. The following files are input:

- CRYSIN crystal data
- FREF reflection data file

Enter at the terminal: \texttt{DIRDIF MONOS PATTY} (Windows version select menu item \texttt{Auto|PATTY})

The program \textbf{PATTY} finds the sulphur atom at a pseudo-special position. To handle this problem the program \textbf{PHASEX} runs through an enantiomorph fixing procedure. The course of the recycling procedure can be followed on the screen. When the program has finished the structure has been solved. The LIS1 file gives the most interesting features of the procedure and a line-plot of the structure. The ATOMS file contains the parameters of the atoms of the structure. It appears that all atoms are correctly nominated (S, O, N, C).

The following files have been created (look at these files using your local editor):

- ATOLD atomic parameters of consecutive steps in the procedure
- ATOMS atomic parameters of the complete structure
- XYZN converted ATOMS file to SHELXL format
- DDLOG information on this run and some important data
- LIS1 file for printing
- LIS2 (ignore, use only in case of problems)

The information on the ATOLD file and on the DDLOG file will be extended in following runs of DIRDIF. The files ATOMS, XYZN, LIS1 and LIS2 files are overwritten in a next run. So, do not delete the files that have been created by this run before you run RUN 2.
Chapter 5.1 DIRDIF

RUN 2. Option PHASEX in automatic mode
Assume for test RUN 2 that we know the position of the sulfur atom. To put in the position of the sulphur atom you modify the file ATOMS which has been created in RUN 1 so that it contains the atomic parameters of the sulphur atom only. So make the ATOMS file to contain:

```
ATOMS    MONOS
ATOM      S  -0.020 0.098 0.146
END
```

The following files now are available for input: ATOMS, CRYSDA, BINFO.

We start an automatic (default) run of DIRDIF program PHASEX. Enter at the terminal: `DIRDIF MONOS PHASEX` (Windows version select menu item Auto|PHASEX)

The sulphur position on x = -0.020 does not have the pseudo-symmetry which occurred in RUN 1, so PHASEX does not run through the enantiomorph fixation. (Note: x=+0.02 gives the enantiomer!) When the program has finished the structure has been solved, the LIS1 file shows the structure, and the ATOMS file contains the parameters of the atoms of the structure. The final results are almost identical to the outcome of RUN 1. (Note: one can not predict whether PATTY finds a positive or a negative x value for the sulphur position).

The following files have been re-created (look at these files using your local editor):

- **ATOMS**: atomic parameters of the complete structure
- **XYZN**: converted ATOMS file to SHELXL format
- **LIS1**: file for printing
- **LIS2**: (ignore, use only in case of problems)

New results have been appended to the following files:

- **ATOLD**: atomic parameters of consecutive steps in the procedure
- **DDLOG**: information on this run and some important data

RUN 3/ 4 Option ORIENT in interactive mode
Assume that we know a rigid fragment of the structure, which is available in the ORBASE file. We start (RUN 3) with calling ORBASE an interactive for an interactive retrieval of the rigid fragment from ORBASE as a set of atomic parameters (7 atoms) which will be stored in file ATMOD. Then (RUN 4) we call an automatic run of ORIENT.

The following files are available for input: CRYSDIN and FREFA.

For RUN 3, enter at the terminal: `DIRDIF MONOS ORBASE` (Windows version select menu item Interactive|ORBASE-ATMOD)

In the following dialog you may also answer in lower case.

On the screen appears: | You answer at the terminal:
- Please give TITLE | Test RUN 3
5.1 DIRDIF - Solve Menu

<table>
<thead>
<tr>
<th>Suggest an item from ORBASE (S)</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Enter model code or number</td>
<td>MONOS</td>
</tr>
<tr>
<td>- Schematic picture of the model. Just try some things..</td>
<td></td>
</tr>
<tr>
<td>Enter first letter of Edit option</td>
<td>X 10</td>
</tr>
<tr>
<td>Enter first letter of Edit option</td>
<td>X 80</td>
</tr>
<tr>
<td>Enter first letter of Edit option</td>
<td>G S1</td>
</tr>
<tr>
<td>Enter first letter of Edit option</td>
<td>Q</td>
</tr>
<tr>
<td>- Is this result acceptable? (Y/....)</td>
<td>Y</td>
</tr>
</tbody>
</table>

The ATMOD file with model coordinates (Cartesian) is output.

For RUN 4, enter at the terminal: **DIRDIF MONOS ORIENT** (Windows version select menu item *Auto*|ORIENT)

The program **ORIENT** reads the model and rotates it, the program **TRACOR** shifts it to the correct position (verified by **TRAVEC**) and the program **PHASEX** expands the model to the complete structure. When the recycling procedure is finished, the structure is solved. The LIS1 file shows some intermediate results and a line-plot of the structure. The output ATOMS file contains the parameters of the atoms of the structure. It appears that within the original input fragment the two nitrogen atoms are placed at carbon positions, and v.v. (Note: the N-C interchange is the result of the **ORIENT** output; one of the other acceptable orientations of the input model does not have this interchange.)

The following files have been updated (look at these files using your local editor):

ATOLD atomic parameters sets of various steps in this run (and in former runs)
ATMOD atomic parameters of the model in Cartesian coordinates
ATOMS atomic parameters of the complete structure
XYZN converted ATOMS file to SHELXL format
DDLOG information and data on this and preceding runs
LIS1 file for printing
LIS2 (ignore, use only in case of problems)

1.6 How to interpret the results, trouble shooting, how to restart

Use your own graphics and your chemical knowledge to edit the final parameters (maybe delete or rename some atoms). The table of bond distances and angles will be of help. If necessary, restart **DIRDIF** to find some more atoms. The final XYZN file, renamed to INS, is ready for use by the program SHELXL.

Trouble shooting
1. The best way to learn about **DIRDIF** is to use it as a routine tool for solving crystal structures. Although **DIRDIF** is designed for delivering automatically the complete set of atomic positions, it is useful to read some of the output listings (LIS1) in order to learn about the way things are done for normal structures.
2. In this section we will give some comments and suggestions which may be useful in special cases. Naturally these are ad-hoc type notes - suggestions given here may be obsolete after next program updates.
3. If you have enough experience with the automatic runs, it is time to try out the various options in interactive mode (with user intervention) and to supply different control data to rerun some of the structures you have solved earlier. Note: you may answer 'H' to all questions to get (some) help-information.
4. The programs ORIENT, TRACOR, and PATTY usually lead to more than one acceptable solution, and the best solution is automatically accepted for further elucidation of the structure. If the structure is not solved this way, one should take the second (and maybe the third, etc) solution stored in the ATOLD file, put it in the ATOMS file, and call for the appropriate program (TRACOR for the second ORIENT solution, etc.).

5. If you are going to restart DIRDIF using a parameter set taken from ATOLD, or if you are modifying the existing ATOMS file, it is advisable to remove the individual B values from the ATOM records.

6. DIRDIF usually uses scale and temperature factors from previous runs. A former incorrect set of atomic positions may have resulted in bad scaling procedures. A fresh start can be obtained by deleting all lines with 'SCALE' from the LOG file, except however the 'MERBIN SCALE'. The same effect is achieved by erasing the BINFO file. In such case it is advisable also to remove the individual B's from atoms that you have selected (in the ATOMS file) for recycling.

7. The NORECY option is used in case you hope to find a chemically reasonable fragment from a Fourier peak list in those troublesome cases where the automatic recycling failed. In this case, however, the R2 criterion is not used for rejecting atoms.

8. A failure of the computer or a technical error in our programs may lead to a supervisor-interrupt, in which case the system may stop without properly deleting or closing various files. This should not cause problems at the next run! But just in case, erase all files which are unknown to you, just be careful not to delete your primary data files or the back-up ATOLD file!

9. In case of a technical program failure, please give us the details: we wish to correct the programs. In case the DIRDIF system cannot solve your structure, please let us know: maybe we can help, probably we can learn from it.

10. About ORIENT: a very small fragment, especially a simple 5- or 6- membered ring, fits almost everywhere in the Patterson. Try to find a bigger fragment with more characteristic geometry, even at the cost of accuracy of the model.

Finally, read messages and look at the numbers in the output LIS1 file. If an uninterpretable error message occurs, write to us - we know and can tell you.

- look for error messages or possible 'WARNINGS'.
- are the temperature factors normal ?
- are high-order reflections adequately measured (not too many unobs)?
- look at the Patterson peaks: is all O.K. ? No apparent space group error?
- see if (for ORIENT) the Patterson origin peak is about zero.
- see if (in PHASEX) the average E^2 converges to about 1.00
- and the symbol-consistency decreases to below 0.50
- and the number of participating reflections is 'normal' ...
- how is the distribution of peaks in the final Fourier map? Too many clusters?

By looking at those numbers and messages after the structure solution of normal structures, one knows what to expect, and one can often find clues in the output LIS1 file for failures or problems encountered with difficult structures. The output listing file LIS2 also might give information.
1.6.1 Restarting DIRDIF

If your structure does not come out as you wish or expect, and you have detected where the solution of the structure probably went wrong, you can rerun part of DIRDIF either with non-default parameters, or with a different model, or using the second solution of ORIENT or TRACOR, etc. Sometimes DIRP1 is an interesting option, especially if many things are uncertain. It requires that the user select his own set of atoms, and when necessary update the cell contents in the CRYSIN file, and interactively modify the scale factor and the temperature factors. As early as possible the user must find possible positions of the symmetry elements, and select atoms in such a way that the superfluous artificial symmetry is reduced. Experimental TRACOR runs may help to locate the symmetry elements. The set of atoms may be shifted using the program NUTS.

Note it is easy to solve a space group uncertainty by restarting DIRDIF using different space groups - just modify the space group in the CRYSIN file.

1.7 Notes for various computers

Technical details are given in the various IMPLEM and EXEC files. The notes given here are related to practical use of DIRDIF and are based upon distributed implementation instructions.

1.7.1 Directories and filenames for MSDOS/Windows

When you start working on a new compound you must first create a directory, probably named after your compound code CCODE, in which all files relating to this compound are stored. When working on a particular compound you have to switch over to its directory. The compound code is not part of the file names. The file names express the function of the files, and are identical for all compounds. Hence the importance of using the correct directory.

Examples: CRYSIN CRYSDA HKL ATOMS ATMOD LIS1

1.7.2 Directories and filenames for UNIX (AIX, LINUX, etc)

When you start working on a new compound you must first create a directory, probably named after your compound code CCODE, in which all files relating to this compound are stored. When working on a particular compound you have to switch over (change directory: cd) to its directory. The compound code (see the implementation instructions for UNIX) is part of the file names. Note that some invisible system files are not unique, and you may never run DIRDIF simultaneously from one directory.

Examples (CCODE=MONOS): monos.crysin monos.atoms monos.lis1

1.8 Acknowledgements

The following students, co-workers and colleagues have greatly contributed to the development of DIRDIF and its sub-programs:

The following colleagues have contributed to the implementation on various computers:

5.1 DIRDIF - Solve Menu

For part of this research financial aid was obtained from the Dutch National Science Foundations FOMRE, SON and STW.

1.9 DIRDIF documents

The DIRDIF.PRIMER (this document) with a short write-up of the use of DIRDIF
The DIRDIF HANDOUT, a two-page summary = terminal document
The DIRDIF.ORBASE-GALLERY, a visualisation of the fragments available in the data base.
The DIRDIF USER'S GUIDE with theoretical background (not yet: several reprints are available).

1.10 References

Reference to DIRDIF-99