Data Collection on the SAXS

- 1. Mount sample holder only (e.g. fill capillary with water and mount)
- 2. Insert glassy carbon and run short (max 300 sec) data set. save results e.g. blank_gc.gfrm
- 3. Remove the glassy carbon and run a long data set. save results e.g. blank.gfrm
- 4. Move sample out of beam insert the glassy carbon and run a short (300 sec) "air" background. save results e.g. air_gc.gfrm
- 5. Remove glassy carbon and run long data set. save results e.g. air.gfrm
- 6. Dismount sample holder (capillary)
- 7. Mount sample (fill capillary with sample)
- 8. Insert glassy carbon and run short (max 300 sec) data set. save results e.g. sample_and_blank_gc.gfrm
- 9. Run long data set. save results e.g. sample_and_blank.gfrm
- 10. Use the transmission function (sample_and_blank_T_s) to calculate transmission factor for sample.

in transmission mode

12. Calculate transmission factor for sample blank (blank_T_s).

for	standard	put	air_gc.gfrm
	standard + sample	put	blank_gc.gfrm
	sample	put	blank.grfm
	air	put	air.gfrm

note: for the quartz capillary and water the blank T_s is about 0.3

- 13. Calculate T_s Ratio ($T_{final} = sample_and_blank_T_s / blank_T_s$) note : T_{final} should be less than one!
- 14. Load sample_and_blank.gfrm and use blank.gfrm as the background file. In the scale factor box input T_{final} (the negative of T_{final}).
- 15. Integrate and save files in the PLOTSO format.
- 16. Option: use the program PLOTSO2Q to convert the (2theta, Intensity) of PLOTSO format to a (q and Intensity) format for the program PRIMUS (etc..)

particle size =
$$R_g \times 2\sqrt{\frac{5}{3}} = R_g \times 2.581988897$$