A]M|TEXAS A\&M UNIVERSITY

Structure from crystals

There are roughly 50000000000000000000 atoms of Na and Cl in a single crystal of salt. To describe the structure of salt at the atomic level we would need to describe roughly 5×10^{19} atomic positions!! BUT there is an easier way. A crystal has long range three-dimensional order. If we could describe a small portion of that order (unit cell) we could then use SYMMETRY to describe the whole crystal! AND that is what we do

Describing Order in Space....

A crystal is a solid material whose
constituent atoms (molecules and ions) are
arranged in an orderly repeating pattern extending in all three spatial dimensions.

Crystal of Salt

unit cell

- The unit cell is a parallepiped that describes the smallest unique volume of the crystal (cell parameter : a, b, $\boldsymbol{c}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$)
- There are 230 ways (space groups) to arrange objects in the unit cell that brings a periodic arrangement of the objects back to their original positions.

The Miller Indices (h,k,l) (Grid) are the reciprocal of the intercepts of imaginary planes that dissect the unit cell with the crystallographic indices: $\boldsymbol{h}, \boldsymbol{k}, \boldsymbol{l}$.

Crystals and Photons...

Orderly Scattering (diffraction)

1D diffraction pattern

Electrons in atoms scatter high energy photons (particles)

- Ordered electrons (atoms) scatter orderly
- Crystals have long-range 3D ordered atoms

3D diffraction pattern

X-ray Diffraction is.

X-rays scatter off of electrons, in a process of absorption and re admission. Diffraction is the accumulative result of the X-ray scattering of a group of electrons. For an incident X-ray photon f monochromatic wavelength, coherent waves are produced a an angle of theta ($2-\theta$ with respect to the incident X-ray) if the electron groups interact with the X-ray and are spaced at a distance d then the interaction is described by Bragg's law

$$
n \lambda=2 d \sin (\theta) .
$$

The intensity of the scattered X -ray is proportional to the number of electrons that the X-ray scatters from.

Two parallel waves show constructive interference when they are in phase i.e. when $\mathbf{n}_{1} \boldsymbol{\ell}=\mathbf{n}_{2} \boldsymbol{\lambda}$ (where $\mathbf{n}_{\mathbf{1}}$ and $\mathbf{n}_{\mathbf{2}}$ are integers)

Waves diffract off of planes (of electrons)

The distance between the planes is $\boldsymbol{d}_{\boldsymbol{k k l}}$

Bragg's Law $\ell / \mathrm{d}=\sin \theta$ $\ell=d \sin \theta$
(since $n \lambda=\ell+\ell$ then) $\mathrm{n} \lambda=2 \ell=2 \mathrm{~d} \sin \theta$ therefore.. $d^{*}=1 / d=2 \sin \theta / n \lambda$
\boldsymbol{d}^{*} and $\boldsymbol{\theta}$ can be described by the Miller Indices and cell parameters $(2 \sin \theta / \lambda)^{2}=\left(1 / d_{h k l}\right)^{2}=d_{h k l}^{* 2}=a^{* 2} h^{2}+b^{* 2} k^{2}+c^{* 2} l^{2}+$ $2 b^{*} c^{*} k l \cos \alpha^{*}+2 a^{*} c^{*} h l \cos \beta^{*}+2 a^{*} b^{*} h k \cos \gamma^{*}$

rom Diffraction to structure

Normally one would use a microscope to view small objects. If we use a light microscope we cannot look at objects smaller than he wavelength of light which is about $10^{-6} \mathrm{~m}$. Since the atom has dimensions of about $10^{-10} \mathrm{~m}$ we cannot image an atom with photon of light. X-rays, on the other hand, have a wavelengt解 $10^{-10} \mathrm{~m}$ and are suitable for imaging objects at the tomic scale but cannot be lensed, so we must do what a len would do only with X-rays, math and modeling

Collect Data and Integrate

Resolution limit

 $d_{h k l}^{*}=\left(1 / d_{h k l}\right) \rightarrow$ where the atoms are
 $I(h k l) \quad \rightarrow$ what the atoms are

$d_{h k l}^{*}=2 \sin \theta_{h k l} / \lambda$
Integrate

Convert $I(h k l)$ to a Wave

$I(h k l)$

$\left|F_{h k l}\right|_{o b s}=\sqrt{k I_{h k l}}$

$$
\begin{aligned}
& \rho(x y z)=\sum_{h} \sum_{k} \sum_{l}\left|F_{h k l}\right|_{o b s} \cos 2 \pi\left(h x+k y+l z-\alpha^{\prime}\right) \quad \text { [phase angle] } \\
& \text { electron density map with grid }(x, y, z)] \\
& \tan ^{-1}\left(\frac{\sum_{i} f_{i} \sin 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)}{\sum_{i} f_{i} \cos 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)}\right)=\alpha_{h k l}
\end{aligned}
$$

[positions of the atoms (i) are $\left(x_{i} y_{i}, z_{i}\right)$
[start with random phase angles or atomic and $\boldsymbol{f}_{i}=f_{\text {calc, } i} \exp \left(-2 \pi^{2} U d^{* 2}\right)$ where positions and deduce initial phase angles
U are displacement parameters]
$\rho(x y z)=$ Electron Density Map (wave)

Model Fits the wave !!!
Report $x_{i} y_{i} z_{i}, U_{i}$, cell
parameters, spacegroup etc.

