Welcome for all New X-ray Diffraction Users

All qualified Texas A & M University employees and visiting scholars may use the facilities provided they have completed the required X-ray safety and instrument training and have the approval of the Department of Chemistry and their supervisor.

All Industrial Users goto the All Users link (to the left) for more information.

To get started you should know what you require from X-ray Diffraction (powder or single crystal) and what you have (a crystal, powder, solid etc.) to analyze.

To answer some of these questions start with the FAQ section below.

You may want to use X-ray Diffraction if

  • You want a molecular or extended structure and you have a large (> 100 micron) single crystal

  • You have a crystalline powder and you want to determine its powder pattern.  About 1gram of Powder ground to about 50-100microns.

  • You have a solid that is semi-crystalline and you want to characterize it.  Material should be no more than 1cm on each side and 1cm deep with a flat surface.

  1. Complete online training here

  2. Complete all Necessary Forms

  3. Have your advisor sign the Key Request Form and the Building Security Form and bring all four forms to room 2408 for the signature of the X-ray Diffraction Laboratory Manager

  4. Register and aggree to the policies and procedures of the X-ray Diffraction Laboratory

Start Online Training

For more information go to the All Users section of the website

FAQ..

Basic Questions

What is X-ray Diffraction?
Why do you use X-rays?
Why do you use crystals?
How do you determine molecular structure from X-rays and Crystals?
What are crystal lattices and the unit cell?
What are the Bravais Lattices?

What is a Space Group?

Local Question (for Laboratory users)
How and where to submit samples
To reserve instrument time you must...
How much will it cost?
Do I you need general X-ray safety training YES IF ..
What free crystallographic programs do I need to get started ...
If the X-ray lab collects my data and I want to solve and refine my structure ...
How do I access the Cambridge Data Base?
I  need help on solving and/or refining my structure

General Questions
How do I grow good crystals?
How do I mount my sample?

Odds and Ends

Historical
Must Read Book List for Crystallographers




Basic Information


 

Xray Diffraction is ..

X-rays scatter off of electrons, in a process of absorption and re-admission.  Diffraction is the accumulative result of the x-ray scattering of a group of electrons.  For an incident X-ray photon of monochromatic wavelength ?, coherent waves are produced at an angle of theta (2-theta with respect to the incident x-ray) if the electron groups interact with the x-ray and are spaced at a distance d.  The interaction is described by Bragg's law : nlamda =2dsin(theta).  The intensity of the scattered x-ray is proportional to the number of electrons that the x-ray is scattered from.

Back to top


We use X-rays because ...

Normally one would use a microscope to view small objects. For a microscope, light is scattered by an object and collected using lenses, which in turn magnifies the image of the object. The limit of the microscope is intrinsic to the nature of the electromagnetic radiation that is used to probe the object.   If we use light we cannot look at objects smaller than the wavelength of light which is about 10 -6 m.  Since the atom has dimensions of about 10-10 m we cannot image an atom with a photon of light.   X-rays, on the other hand, have a wavelength of about 10 -10 m and are suitable for imaging objects at the atomic scale.

Back to top


We use crystals because ..

To observe a single object, we normally fix the object to a microscope slide.  To view an atom we would need some method to handle a small atom and align it in the microscope.  This would be quite difficult and the x-rays scattered by a single atom is extremely week.  A better method is to use 1020atoms (the number found in a small -crystal) and to sum the scattered x-rays from each atom.  The trick is to align the atoms in neat orderly rows and columns so that the scattered x-rays would form predictable patterns that are based on the original arrangement of the atoms.  All of the atoms of a single-crystal are oriented the same way and the scattered x-rays are superimposed and can be measured.   Each scattering event that is measures is called a "reflection". There is typically 2000 to 100000 independent reflections for each single-crystal.

Back to top


We can determine Molecular Structure ....

The scattered x-rays contain both angular and intensity information.  The information concerning the position of the electrons (and atoms) involves both the amplitude and phase of the scattered intensities.  For standard data collection techniques the amplitudes for the diffracted intensities are measured, however the phases are lost due to the nature of the experiment.  Direct methods is employed to re-determine the phases. 

Structure determination is the process of model building, structural factor (intensity) prediction and comparison to the observed structure factors.  The model is constructed by introduction of atomic positions at electron density maxima.  The model is then employed to predict structural factors which are refined (non-linear least squares) against the observed structural factors.  The comparison between the predicted and observed structure factors is known as the residual and attests for the validity of the model.

Back to top


Crystal Lattice and the unit cell are ...

A single-crystal is described as an order set of atoms (electrons) in a fixed orientation.  Typically a single crystal suitable of analysis is at least 50 µm in its smallest dimension and not more than 500 µm in its largest.   The smallest non-reproducible volume of the crystal is called the unit cell. The size of the unit cell ranges from a few hundred cubic angstroms (10-10 m) to 10's of thousands.  By application of symmetry the unit cell can be repeated, in three dimensions, to describe the entire crystal.   The unit cell in turn can be described by three non-coplanar axis a, b and c and the inter axis angles alpha ,beta and gamma which are called the Lattice Parameters.    Seven crystal systems are described in terms of the lattice parameters

Back to top


The seven crystal systems are

 

SYSTEM UNIT   CELL   LENGTH UNIT  CELL  ANGLES
1) Cubic a = b = c alpha=beta=gamma=90deg
2) Tetragonal a = b      alpha=beta=gamma=90deg
3) Orthorhombic no conditions alpha=beta=gamma=90deg
4) Rhombohedral a = b = c alpha=beta=gamma does not equal 90deg
5) Hexagonal a = b alpha=beta=90deg   gamma=120deg
6) Monoclinic no conditions alpha=beta=90 deg
7) Triclinic no conditions no conditions

Back to top


The Bravais Lattices are ...

Lattice Symbol
1) Primitive P
2) (single face centered cells)
     A face (bc plane) - centered A
     B face (ac plane) - centered B
     C face (ab plane) - centered C
3) Face - centered F
4) Body - centered I

 

Back to top


Space Groups are ...

Space groups are a way of describing how objects are arranged in three-dimensional space.  There are four symmetry operations allowed in  three dimensional "space". 

 

Operation Symbol (Hermann) Symbol (Schoenflies)
Rotation 1,2,3,4,6 E, C2, C3, C4, C6
Reflection m Cm
Inversion -1, 2/m i
Rotation/Inversion -1,-3,-4,-6 n/a

A symmetry operation followed by translation is also allowed

 

Screw axis       21, 31, 32, 41, 43, 61, 65

Glide planes    a,b,c,n,d

 

A space group is described as a closed set of symmetry operations that describe the total symmetry of a given volume of space (unit cell).  The first letter of the space group describes the centered cell (P, A, B, C, F or I).  The following symbols represent the smallest set of non-reducible symmetry operations. 

e.g.       Pmmm     Primitive cell with three perpendicular mirror planes

Back to top


 

Local Questions

 


How and where to submit samples

Submit your samples to the X-ray staff for approval.  Bring your sample to rm 2409 between 9:00am-5:00pm weekdays

There are two ways to submit your sample and determine your structure.

 
1st ) You can request that the x-ray diffraction laboratory staff undertake the investigation.  
    This way is suggested if ...
    a) you undertake only a few structural determinations a year
    b) your advisor does not want you to undertake the time and expense of learning a new skill.

 
2nd ) You can be trained and you can do your own work.  This method is suggested  if ...
    a) your structures are major part of your research
    b) you must defend your structures before skeptical investigators

Back to Top


To reserve instrument time ...

 

 
To reserve time please use the calendar reservation system.

 

Back to Top


How much will it cost?

Call 979-845-9125 for information

 

 

Back to Top


Yes you need safety training IF ...

Yes !! :  If you intend to do your own structures

No      : If you wish for the staff to do your structures

X-ray Safety Training

Before you begin the x-ray staff will train you on the site specific safety issues. 

Goto NEW USERS page for further details.

 

Back to Top


Free crystallographic programs to get started ....

You should download some of the free crystallographic software on the net

     a)WinGX -  A GUI (windows) for some of the most popular (and free) software.  First download the software and then e-mail the author for a free license.   SHELXS, SHELXL, PLATON, SIR92 and several other valuable programs come with the package.

     b)GTREP - A structure graphics and plotting program.  Will plot thermal ellipsoids.

     C)Mercury from the CSD

Back to Top


If the X-ray lab collects the data we will provide ..

You will be given (at least) two files    project_name.HKL and  project_name.INS      The X-ray Staff will assist you the first few times.

Back to Top


The Cambridge Crystallographic Data Base can be ..

 
The Cambridge Crystallographic Data Base is located on a PC computer in the X-ray Facility or through WebCSD (tamu domain only)

Back to Top

 


 

General Questions

 


How do I grow good crystals?

Crystals :  See Growing Crystals

Recommended reading
P.G. Jones: Crystal growing, Chemistry in Britain (1981) 17, 222-225. 
J. Hulliger: Chemistry and Crystal Growth, Angew. Chem. Int. Ed. Engl. (1994) 33, 143-162. Angew. Chem. (1994) 106, 151-171. 
A. Holden, P. Morrison: Crystals and Crystal Growing, MIT Press, Cambridge, Massachusetts (1982) ISBN 0-262-58050-0 
J.W. Mullin: Crystallization, Butterworth-Heinemann, Oxford, Great Britain (1993) ISBN 0-7506-1129-4 

Back to Top


How do I mount my sample?


Two methods are commonly employed.
    a)Thin glass fiber
A thin glass fiber is pulled and attached to a copper pin (magnetic base, Hampton) with clay and finger nail polish.  The fiber can be pulled by heating a Klimax® melting point tube in a hot flame.  The fiber is typically 50 to 100 mm in diameter.  The crystal is glued to the fiber with an adhesive.

    b)Nylon loop or Mylar loop
A thin (thickness  = 20mm) 0.7 mm diameter nylon loop  (Hampton) that is attached to a magnetic base is coated with Paratone®  or Apieazon® grease is used to "lasso" (Texas style) a crystal and pulled it off the microscope plate. 

Hints 

-Crystals can be covered with a thin layer of oil to prevent decomposition in air.  
  Mineral oil.  
  Paratone® (a poly-isobutylene:  additive free STP)
  Poly-isobutylene (is available in several viscosities)
  Perfluorinated oils (Krytox® oil)
  Epoxy resin (less hardener)
  Apieazon® grease

-If your crystals lose solvent, try adding a few drops of the solvent (mother liquor) to mineral oil or paratone and then cover the crystals with this mixture.  Some experimentation on solvent concentrations in the oil may be needed.

-Adhesives for specimen pins
  super glue                holds up to 373K       dries fast
  dental cemen                        to 573K        dheres to glass well
  Epoxy resins                         to 373K        slow drying
  Apiezon® Grease(T)               to 103K        low scatter
  Silicon Grease (not 4)             to 133K       Si scatter (cheap)
  Vaseline                               to 200K           sticky
  Balsam                                 to RT         dilute with xylene
  Wax                                     to RT           permanent

Back to Top


Crystallographic Papers


Historical Papers

Birth of Crystallography :   

1669 Nicolaus Skno :  Determined that angles between crystal faces remained constant between crystals of the same compound.

1895 Rontgen :  Discovers X-rays : Science (1896) 53, 274. (in English)
First X-ray Diffraction Experiment :   Friedrick, W. Knipping, P. & Laue, M.  Bravarian Acad. Sci. (1912) 303. 
First Structure Determination : Bragg, W.H & Bragg W.L. Proc. Royal. Soc. (1913) A88, 428.
First X-ray Camera (Powder): Debye, P. & Scherrer, P. Phys Z. (1916) 17, 277-283.
                                         Hull, A. W.  Phys. Rev. (1917) 10, 661-696.
First X-ray Diffraction Instrument: Weissenberg, K. Z.Phys. (1924) 23, 229.
First Geiger Counter:  Locher, G.L. & LeGalley, D.P. Phys. Rev. (1933) 46, 1047.
First X-ray Precession Instrument : Buerger, M.J. "X-ray Crystallography"  (1942) Wiley, New York
First Scintillation Counter: West, H.I., Mayerhot, W.E., Hotstadter, R. Phys. Rev. (1951) 81, 141.

Back to Top


Top Ten Must Read Crystallographic Books.


1. Crystal structure determination  by: Werner Massa                  
      "My favorite introduction to Crystallography"
     "It's the one book I would force into a student hands!"
2. Crystal Structure Analysis by: Glusker and Trueblood
     "A good starter for the common scientist"
3. Crystal Structure Determination  and Crystal Structure Analysis  by: Bill Clegg
     "One of my favourite and informative book(s).  First time crystallographers should read these books first."
4. Cystallography Made Crystal Clear   by: Gale Rhodes 
      "For the Novice/macromolecular user"
5. Fundamentals of Powder Diffraction and Structural Characterization of Materials by: Pecharsky and Zavalij
    "Only book that I know of that explains indexing and indexing programs"
    "A must own book for the powder and single-crystal diffractionist!"
    "A gota-have book for people interested in the bigger picture"
6. Structure Determination by X-ray Crystallography by: Ladd and Palmer 
        "I have given Ladd and Palmer to non-crystallographers who needed to gain 
         a basic understanding of the process."
7. X-ray Structure Determination by: Stout and Jensen 
       "a good, practical book for the student after they are into the subject" 
8. X-ray Analysis and the Structure of Organic Molecules by: Dunitz 
           "a great book (even for an inorganic chemist) and it is filled Jack's usual wit"
           "The section on weighting schemes in least squares is a must read"
9. The Determination of Crystals Structures by: Lipson & Cochran
           "It is still an amazing book!"
10. Fundamentals of Crystallography  edited by C. Giacovazzo
            "A MUST HAVE for a lab"
           "For more advanced students Giacovazzo is a must."

 Back to top



Tests for Center of Symmetry

Wilson, A.J.C. (1949) Acta Cryst., 2, 318-321. 
Howells, E.R.; Phillips, D.C. & Rogers D. (1950) Acta Cryst., 3, 210-214. 
Marsh, R.E. (1986) Acta Cryst., B42, 193-198. 

Back to Top


Crystallographic Information File

CIF format :: I.U.Cr. Commission on Crystallographic Data:
S.R. Hall, F.H. Allen and I.D. Brown (1991) Acta Cryst., A47, 655-685. 

Back to Top


Chemical Group Modeling


Ipso-angles of phenyl rings differ systematically from 120 degrees 

P.G. Jones (1988) J. Organomet. Chem., 345, 405 
T. Maetzke and D. Seebach (1989) Helv. Chim. Acta, 72, 624-630 
A. Domenicano, "Accurate Molecular Structures", eds. Domenicano and Hargittai, Chapter 18, OUP (1992) 

Standard (restraint) bond lengths based on the CSD 

F.H.Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen and R. Taylor in Sections 9.5 and 9.6 of Volume C of "International Tables for Crystallography" (1992), Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, pp. 685- 791.

Standard (retraint) bond lengths for protiens 
R.A. Engh and R. Huber (1991) Acta Cryst., A47, 392-400. 

Standard (restraint) bond lengths For nucleic acids 
R. Taylor and O. Kennard (1982) J. Mol. Struct., 78, 1-28 (bases and phosphates) 
S. Arnott and D.W.L. Hukins (1972) Biochem. J., 130, 453-465 (furanose rings). 

Plainarity of nucleic acid bases 
R. Taylor and O. Kennard (1982) J. Am. Chem. Soc., 104, 3209-3212 

Diffuse solvent modeling by Babinet's principle 
R. Langridge, D.A. Marvin, W.E. Seeds, H.R. Wilson, C.W. Hooper, M.H.F. Wilkins and L.D. Hamilton (1960) J. Mol. Biol., 2, 38-64
H. Driessen, M.I.J. Haneef, G.W. Harris, B. Howlin, G. Khan and D.S. Moss, J. (1989) J. Appl. Cryst., 22, 510-516 

Rigid body analysis 
Schomaker, V. and Trueblood, K.N. (1968) Acta Cryst., B24, 63-76.

Back to Top


Data Collection and Reduction

Area Detection -CCD strategies
S. Ruhl and M. Bolte (2000) 215, 499-509

Area Detection -peak bases
Bolotovsky, R.; White, M.A.; Darovsky, A. and Coppens, P. (1995), J. Appl. Cryst. 28, 86-95. 

Diffractometer 
Alexander, L & Gordon S.S. (1962) Acta Cryst., 15, 983-1004. 

Diffractometer Alignment 
Samson, S. and Schuelke, W.W. (1967) Rev. Sci. Instr., 38, 1273-1283. 

Cell reduction and Lattice Symmetry 
Glegg, W. (1981) Acta Cryst., A37, 913-915. 
Gruber, B. (1973) Acta Cryst., A29, 433-440. 

Scan type Wyckoff 
Wyckoff, H.W.; Doscher, M.; Tsernoglou, D.; Inagami, T.; Johnson, L.; Hardman, K.D.; Allewell, N.M.; Kelly,M. & Richards, F. (1967) J. Mol. Biol., 27, 563-578.

Data Reduction 
Blessing, R.H. (1987) Cryst. Rev., 1, 3-58. 
Blessing, R.H. & Langs, D.A. (1987) J.Appl. Cryst., 20, 427-428. 

X-ray beam and Detection 
Harkema, S.; Dam, J.; Van Hummel, G.J. and Reuvers, A.J. (1980) Acta Cryst., A36, 433-435. 
Katrusiak, A. & Ryan, T.W. (1988) Acta Cryst., A44, 623-627. 
Nelson, J.T. & Ellickson, R.T. (1955) J. Am. Opt. Soc., 45, 984-986. 

Intensities 

Slaughter, M. (1968) Kristallogr., 129, 24-35. 
McCanlish, L.E.; Stour. G.H. and Andrews, L.C. (1975) Acta Cryst., A31, 245-249. 
French, S. & Wilson, K. (1978) Acta Cryst., A34, 517-525. 

Learnt Profile Analysis 

Diamond, R. (1969) Acta Cryst., A25, 43-55. 
Clegg, W. (1981) Acta Cryst., A37, 22-28. 

Lehmann/Larsen method 

Lehmann, M.S. & Larsen, F.K. (1974) Acta Cryst., A30, 580-584. 

Floating Baseline 

Reibenspies, J.H. (1994) J.Appl.Cryst. 26,426-430. 

Normal Back/Peak/Back 

Tickle, I.J. (1975) Acta Cryst. B31, 329-331. 

Slope Detection method 

Grant, D.F. & Gabe, E.J. (1978) J.Appl. Cryst. 11, 114-120. 

Misc. procedures and investigations 

Spencer S.A. and Kossiakoff (1980) J. Appl. Cryst., 13, 563-571. 
Dudka, A.P. and Loshmanov, A.A. (1992) Sov. Phys. Crystallogr., 36, 625-626. 
Langford, J.L. (1978) J. Appl. Cryst., 11, 10-14. 
Lehmann, M.S. (1975) J. Appl. Cryst., 8, 619-622. 
Chulichkov, A.I.; Chulichkova, M.; Fetisov, G.; Pyt'ev,Y.P.; Lupyan, Y.V.;Laltionov, A.V.; Nesterenko, A.P. and Aslanov, L.A. (1987) Sov. Phys. Crystallogr., 32, 649-653.
van der Wal, H.R.; de Boer, J.L. and Vos, A. (1979) Acta Cryst., A35, 685-688. 
Strel'tsov, V.A. and Zavodnik, V.E. (1989) Sov. Phys. Crystallogr., 34, 824-828. 
Norrestam, R. (1972) Acta Chem. Scand., 26, 13-21. 
Rigoult, P. J. (1979) J.Appl.Cryst., 12, 116-118. 
Blessing, R.H.; Coppens, P. & Beker, P. (1972) J. Appl. Cryst., 7, 488-492. 
Rossman, M.G. (1979) J. Appl. Cryst., 12, 255-238. 

Reflection Intensity Photography 

Xuong, N. & Freer S. Acta Cryst., B27, 2380-2387. 

Laue Film Integration & Deconvolution 

Shrive, A.K.; Clifton,I.J.; Hajdu, J. and Greenhough T.J. (1990) J. Appl. Cryst., 23, 169-174. 

Decay Correction 

Abrahams, S.C. and Marsh, P. (1987) Acta Cryst., A43, 265-269. 
Ibers, J.A. (1969) Acta Cryst., B25, 1667-1668. 



Back to Top


Extinction Correction

 
A.C. Larson in "Crystallographic Computing" (1970), Ed. F.R. Ahmed, Munksgaard, Copenhagen, pp. 291-294. 
Larson, A.C. (1967) Acta Cryst., 23, 664-665. 
Zachariasen, W.H. (1963) Acta Cryst., 16, 1139-1144. 

Back to Top


Least Squares Refinement

Floating origin restraints: 
H.D. Flack and D. Schwarzenbach (1988) Acta Cryst., A44 499-506. 

Use of all data in refinement. 
F. L. Hirshfeld and D. Rabinovich (1973) Acta Cryst., A29, 510-513 
L. Arnberg, S. Hovmoller and S. Westman (1979) Acta Cryst., A35, 497-499 

Refinement of racemic twins 

Pratt, Coyle and Ibers (1971) J. Chem. Soc., 2146-2151 
Jameson (1982) Acta Cryst., A38, 817-820. 

Conjugated Gradient L. S. algorithm 

W.A. Hendrickson and J.H. Konnert "Computing in Crystallography", Ed. R. Diamond, S. Ramaseshan and K. Venkatesan, I.U.Cr. and Indian Academy of Sciences, Bangalore 1980, pp. 13.01-13.25.
D.E. Tronrud (1992) Acta Cryst., A48, 912-916. 

Least-Squares Restraints : 

J.S. Rollett in "Crystallographic Computing", Ed. F.R. Ahmed, S.R. Hall and C.P. Huber, Munksgaard, Copenhagen, (1970) pp. 167-181.
F.L. Hirshfeld (1976) Acta Cryst., A32, 239-244 
K.N. Trueblood and J.D. Dunitz (1983) Acta Cryst., B39,120-133. 
.J. Didisheim and D. Schwarzenbach (1987) Acta Cryst., A43, 226-232 

Shift limiting least-squares restraints (damping) Marquardt algorithm :: 

Marquardt (1963) J. Soc. Ind. Appl. Math., 11, 431-441. 

Back to Top


Program References

 
SHELXTL-PLUS

Sheldrick, G. (1990) SHELXTL-PLUS revision 4.11V, SHELXTL-PLUS users manual,Siemens Analytical X-ray Inst. Inc., Madison WI, U.S.A.

SHELXS-86 

Sheldrick, G. (1986) SHELXS-86 Program for Crystal Structure Solution, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Gottingen, Germany.

SHELXL-97

Sheldrick, G. (1997) SHELXL-97 Program for Crystal Structure Refinement, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Gottingen, Germany.

TEXSAN

teXsan : Single Crystal Structure Analysis Software, Version 1.6 (1993). Molecular Structure Corporation, The Woodlands, Texas 77381.

DIRDIF-99

Beurskens, P., Admiraal, G., Beurskens G., Bosman, S., Garicia-Granda, R., Gould, J., Smykalla, A. and Smykalla, C. (1992). DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands

SIR-97

Giacovazzo C. (1997) SIR-97 Program for Crystal Structure Solution, Inst. di Ric. per lo Sviluppo di Metodologie Cristallograpfiche, CNR, Univ. of Bari, Italy.

SIR-88

SIR88 : Burla, M.C.; Camalli, M.; Ccascarano, G.; Giacovazzo, C.; Polidori, G. and Viterbo, D. (1989) J. Appl. Cryst. 22, 389-393.

PATSEE 

Egert, E. (1985) PATSEE Program for Crystal Structure Solution by Integrated Patterson and Direct Methods, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Gottingen, Germany. Egert, E. and Sheldrick, G. (1985) Acta Cryst A41, 262-268.

SHAKAL

SCHAKAL88 : Keller, E. (1989) J. Appl. Cryst. 22, 12-22. 

PLUTON

Spek, A.L.. (2002) PLUTON. Program for Molecular and Crystal Graphics. Vakgroep Algemene Chemie, University of Utrecht, Afdeling Kristal-En Structuurchemie, Padualaan 8, 3584 Ch Utrecht, The Netherlands.

PLATON
Spek, A.L.. (2002) PLATON. Program for Crystal Structure Results Analysis. Vakgroep Algemene Chemie, University of Utrecht, Afdeling Kristal-En Structuurchemie, Padualaan 8, 3584 Ch Utrecht, The Netherlands.

ORTEP-76

Johnson, C.K. (1976) ORTEP-II. A Fortran Thermal-Ellipsoid Program, Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge Tennessee.

Back to Top


Space groups/ Laue symmetry / Unit cell

polar space groups 
H.D. Flack and D. Schwarzenbach (1988) Acta Cryst., A44 499-506 

MISSYM 
LePage, Y. (1987) J Appl. Cryst., 20, 264-269 

Lattice symmetry determination 
Mighell, A.D. and Rodgers, J.R. (1980) Acta Cryst., A36, 321-326. 
Baur, W.H. and Tilmanns, E. (1986) Acta Cryst., B42, 95-111. 


Structure inversion for special space groups 
E. Parthe and L.M. Gelato (1984) Acta Cryst., A40, 169-183 
G. Bernardinelli and H.D. Flack (1985) Acta Cryst., A41, 500-511

Back to Top


Statistical Descriptors in Crystallography

D. Schwarzenbach; Abrahams, S.C.; Flack, H.D.; Gonschorek, W.; Hahn, T;Huml, K.; Marsh, R.E.; Prince, E.; Robertson, B.E.; Rollet, J.S. and Wilson, A.J.C. (1989) Acta Cryst., A45, 63-75.

 

Back to Top


Twinning

Racemic twinning 
H.D. Flack (1983) Acta Cryst., A39, 876-881. 

Twinning structural reasons. 
W. Hoenle and H.G. von Schnering (1988) Z. Krist., 184, 301-305. 
Buerger, M.J. (1945) J. Am. Miner., 30, 469-482.

SHELXL-97
R. Herbst-Irmer, G. Sheldrick (1998) Acta Cryst, B54, 443-449. 

Back to Top


Weighting Scheme

Statistical bias 

A.J.C. Wilson (1976) Acta Cryst., A32, 994-996. 

Exponential weights 

J.D. Dunitz and P. Seiler (1973) Acta Cryst., B29, 589-595. 

Back to Top


X-ray flux

Honkimaki, V.; Sleight, J. and Suorott, P. (1990) J. Appl. Cryst., 23, 412-417. 

Back to Top